Ugrás a tartalomra

Zöldhulladékból készült bioszén növény növekedésre gyakorolt hatása homokos talajban

Adatszolgáltató

Budapesti Műszaki és Gazdaságtudományi Tanszék, Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék, Környezeti Mikrobiológia és Biotechnológia Kutatócsoport

Szervezet/Adatszolgáltató neveBudapesti Műszaki és Gazdaságtudományi Tanszék, Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék, Környezeti Mikrobiológia és Biotechnológia Kutatócsoport
Kapcsolattartó személy neve
Dr. Molnár Mónika, Dr. Feigl Viktória
Elérhetőség
Telefon/fax
+36-1-4632347
Technológia fő adatlapja
Technológia neveZöldhulladékból készült bioszén növény növekedésre gyakorolt hatása homokos talajban
Technológia angol neve
The Influence of Biochar on Growth of Lettuce and Potato
Kifejlesztés országa
Ausztrália
A fejlesztés fázisa
alkalmazott
Szabadalom száma
n.a.
A fejlesztés finanszírozása
Fejlesztési projekt neve, száma
n.a.
Fejlesztés kezdete
2010
Fejlesztés befejezése
2014
Saját forrás
n.a.
Nemzeti forrás
n.a.
Nemzeti program neve
n.a.
Nemzetközi forrás
n.a.
Nemzetközi program neve
n.a.
Alkalmazási kör
Talajromlási folyamat, amire alkalmazható
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
Elektromos vezetőképesség (EC) változása bioszén kezelés hatására
A környezeti kockázatot jellemző mérőszám mértékegysége
dS/m
Jellemző kezdeti érték
0.26
Maximális kezdeti érték
0.27
Jellemző végérték
0.54
Maximális végérték
0.55
Talajromlási folyamat, amire alkalmazható
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
pH változása bioszén kezelés hatására
Jellemző kezdeti érték
7.60
Maximális kezdeti érték
7.77
Jellemző végérték
8.68
Maximális végérték
8.83
Talajromlási folyamat, amire alkalmazható
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
sókoncentráció változása bioszén kezelés hatására
A környezeti kockázatot jellemző mérőszám mértékegysége
%
Jellemző kezdeti érték
0.089
Maximális kezdeti érték
0.092
Jellemző végérték
0.184
Maximális végérték
0.187
Technológiára vonatkozó információ
Környezeti elem/fázis, amelyre a módszer alkalmazható
Telített talaj
Telítetlen (teljes) talaj
Technológia típusa
Egyszerű
Technológia alapja
Kémiai
Biológiai
A technológia általános ismertetése

A bioszén egy elsősorban szerves hulladékból (fa és fakéreg, kukoricacsutka, állati trágya és egyéb hulladékok) pirolízis útján előállított anyag - faszén és hamu keveréke, (Biomassza oxigénmentes magas hőmérsékleten történő elégetése során visszamaradt stabil anyag.) amely alkalmas talajjavításra, a talajrendszer segítésére, talajkimosódás csökkentésére, valamint mikrobák számára kedvezőbb táptalaj biztosítására, és a szén megkötésére a talajban - ezáltal az üvegházhatású gázok csökkentésére és az éghajlatváltozás mérséklésére (ami viszont egyelőre gazdaságosan nem megvalósítható).

A vizsgálat során zöldhulladékból készült bioszén került alkalmazásra saláta, burgonya és hajtásvágással kezelt burgonya esetében üvegházban konténeres ültetéssel. Ennek során azt tapasztalták, hogy az általános hatása a növekedési paramétereket illetően volt kiemelkedő.

Kezelés:
5 eltérő mennyiségben kijuttatott valósult meg, nevezetesen 0, 10, 30, 50, és 100 t/ha formájában.
Saláta és hajtásvágott burgonya esetében 5, (normál) burgonya esetében 10 lépésben üvegházban.
A bioszén homokkal került összekeverésre, és ebbe a mixbe lettek beleültetve a növények (egyenként konténerekbe).

Vizsgált (mért) tényezők saláta esetében, bioszén hatása a:
- növény magasságra és levélszámra
- hajtás és gyökér friss tömegre
- hajtások és gyökér száraz tömegére
- teljes friss és száraz tömegre
- gyökér hossz és szélességre
- hajtás - gyökér arányra.

Vizsgált (mért) tényezők burgonya esetében, bioszén hatása a:
- növénymagasságra
- levelek számára növényenként
- gumók számára növényenként
- sztólóra (tarack) növényenként.

* Az említett adatok közül a növény magassága és a levelek száma hetente került feljegyzésre, a többi tényező a betakarítást követően.

A technológia újdonsága

A bioszén alkalmazása egy viszonylag új technológiának számít.
Elterjedése a mezőgazdaságban nem általános sem Ausztráliában, sem pedig máshol a világon, mivel a termésmennyiségre és a talaj életre vonatkoztatott agronómiai értékeinek előnyei nem eléggé számszerűsíthetők széles körben alkalmazva - a hitelesítés szempontjából viszont a konkrét ajánlás elengedhetetlen.
A bioszén maga egy hasznos környezetbarát anyagnak tekinthető, mivel hulladékból állítják elő (elsősorban zöldhulladékból), újabbat nem eredményez, viszont elősegíti a növény növekedését környezetbarát módon (vegyszermentesen), hatása azonban számos tényezőtől függ (talajtípus, növényfajta és annak állapota elültetéskor).

Technológia besorolása
A technológia típusa
  • Talajjavítás bioszénnel
  • Talajjavítás mezőgazdasági és erdészeti hulladékból készült bioszénnel
Technológia-monitoring
Technológiai paraméterek
Mozgatott talajmennyiség
Környezetmonitoring helye
Telített talaj
Telítetlen (teljes) talaj
Technológia költségei
Beruházási költség
10 - 50.000.000 HUF
Fajlagos müködtetési költség
50 000 - 100 000 HUF
Fajlagos energia költség
5 000 - 10 000 HUF
Fajlagos munkaerőköltség
20 000 - 50 000 HUF
Fajlagos összköltség
100 000 HUF felett
Költségszámítással kapcsolatos megjegyzések

Beruházás költségei: Fóliasátor / üvegház létesítése, öntözőrendszer kialakítása (méret és technológia függő költségek), palánták / növénymagok beszerzési ára, gyökérközeg anyag beszerzési költségei (anyagfüggő, pl: tőzeg, kókuszrost, perlit, kőgyapot, szalma, homok, zeolit stb.) munkadíj, felmerülő logisztikai és egyéb gépészeti berendezések költségei.

Fajlagos költségek: Munkadíj 1 ha területre számolva napi 8 óra munkával a növénnyel való foglalkozási igénynek megfelelően, Növényház fűtése / hűtése és megvilágítása, valamint egyéb energiaszükséglet és gépészet költségei (pl: vízszükséglet, öntözés, szivattyú használat - villamosenergia igény), tápanyagpótlás, bioszén kezelések kijuttatásához tartozó logisztikai költségek.

Fajlagos összköltség: A korábban felsoroltak összessége.

A költségek értékei hozzávetőleges átlag értékek.

SWOT (értékelés osztályzattal)
Költség
3-közepes
Időigény
2-nagy
Helyigény
3-közepes
Munkaigény
2-nagy
Felszerelés, műszerigény
3-közepes
Szakember-igény
3-közepes
Környezeti és munkahelyi kockázatok
4-kicsi
Célérték teljesítésének képessége
3-közepes
Környezethatékonyság
4-nagy
Költséghatékonyság
3-közepes
Hasznosítható melléktermék keletkezése
nem
Ártalmatlanítást igénylő melléktermék keletkezése
nem
Automatizálhatóság / távvezérelhetőség
nem
Alkalmazhatóság
4-jó
Elérhetőség
3-közepes
Ismertség
1-rossz
SWOT (szöveges értékelés)
Erősségek

- Környezetbarát vegyszermentes technológia
- Veszélyes melléktermék nem keletkezik általa
- Pozitív hatással van a növény növekedésre és produktumra

Gyengeségek

- Pozitív hatása nem megfelelő mennyiségben számszerűsíthető, ezért nem elterjedt
- Hatását befolyásolja a talajtípus, a növényfajta és annak fejlettségi állapota
- Csak bizonyos mennyiség alkalmazása esetén van pozitív változás, egyébként semleges a hatása

Lehetőségek

- szerves hulladékból készül, így az egyéb mezőgazdasági és faipari melléktermékek hatékonyan hasznosíthatók, felhasználhatók

Veszélyek

A bioszén alkalmazásának mennyiségével arányban növekszik a talaj:
- pH értéke
- EC (elektromos vezetőképesség) értéke
- Sókoncentráció tartalma

Konkrét megvalósult alkalmazások
A terület neve
Mezőgazdasági és Élelmiszertudományi Egyetem
Alkalmazás helye, ország
Queensland Egyetem, Ausztrália
Alkalmazás helye, város
Gatton
Alkalmazás kezdő időpontja
2011
Alkalmazás befejező időpontja
2011
Alkalmazás fázisa
Demonstráció
Területhasználat
  • Mezőgazdasági
Egyéb területhasználat
n.a.
Összefoglaló az alkalmazásról

30 t/ha bioszén alkalmazása során saláta esetében a következő eredmények voltak tapasztalhatók:

- Jelentős különbség a heti növénymagasságban mutatkozott a 'kezelések' hatására, azonban ezek befolyása a növénynövekedésre minden héttel egyre csökkent.

A végeredmény számokban kifejezve a következőképpen alakult:
- Friss hajtástömeg: 36 g (gramm) (kezdeti mért érték: 16,5 g)
- Gyökér friss tömeg: 8,5 g (kezdeti mért érték: 5,7 g)
- Hajtás száraz tömeg: 3,65 g (kezdeti mért érték: 2,0 g)
- Teljes friss tömeg: 43,5 g (kezdeti mért érték: 24,5 g)
- Teljes száraz tömeg: 4,8 g (kezdeti mért érték: 3,0 g)
- Gyökérhossz: 15 cm (kezdeti mért érték: 12,8 cm)

Növénymagasság alakulása/változása 30 t/ha bioszén kezelés során:
1. hét: 1,84 cm
2. hét: 3,70 cm
3. hét: 6,34 cm
4. hét: 11,12 cm
5. hét: 12,74 cm
6. hét: 12,90 cm
7. hét: 13,04 cm

Levélszám alakulása 30 t/ha bioszén kezelés esetén:
1. hét: 4
2. hét: 4,4
3. hét: 6,6
4. hét: 10,0
5. hét: 11,6
6. hét: 12,8
7. hét: 13,0

Talajromlási folyamat
Talajromlási folyamat, amire alkalmazták
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
pH változása bioszén kezelés hatására
A környezeti kockázatot jellemző mérőszám mértékegysége
-
Jellemző kezdeti érték
7.60
Maximális kezdeti érték
7.77
Jellemző végérték
8.68
Maximális végérték
8.83
Talajromlási folyamat, amire alkalmazták
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
sókoncentráció változása bioszén kezelés hatására
A környezeti kockázatot jellemző mérőszám mértékegysége
%
Jellemző kezdeti érték
0.089
Maximális kezdeti érték
0.092
Jellemző végérték
0.184
Maximális végérték
0.187
Talajromlási folyamat, amire alkalmazták
  • Biológiai degradáció
  • Szervesanyag vesztés
Egyéb talajromlási folyamat
n.a.
Csökkentendő környezeti kockázat jellemzése
A környezeti kockázatot jellemző mérőszám
Elektromos vezetőképesség (EC) változása bioszén kezelés hatására
A környezeti kockázatot jellemző mérőszám mértékegysége
dS
Jellemző kezdeti érték
0.26
Maximális kezdeti érték
0.27
Jellemző végérték
0.54
Maximális végérték
0.55
A terület neve
Mezőgazdasági és Élelmiszertudományi Egyetem
Alkalmazás helye, ország
Queensland Egyetem, Ausztrália
Alkalmazás helye, város
Gatton
Publikáció, referencia
Publikációk

Kalika P Upadhyay, Doug George, Roger S Swift and Victor Galea (2014) The Influence of Biochar on Growth of Lettuce and Potato, Journal of Integrative Agriculture 13(3): 541-546, doi: 10.1016/S2095-3119(13)60710-8

Referenciák

Brandstaka T, Helenius J, Hovi J, Kivelä J, Koppelmäki
K, Simojoki A, Soinne H, Tammeorg P. 2010.
Biochar filter: Use of biochar in agriculture as soil
conditioner.
Chan KY, Dorahy C, Tyler S. 2007. Determining the
agronomic value of composts produced from greenwaste
from metropolitan areas of New SouthWales, Australia.
Australian Journal of Experimental Agriculture, 47,
1377-1382.
Chan K, van Zwieten L, Meszaros I, Downie A, Joseph S.
2008a. Agronomic values of greenwaste biochar as a soil
amendment. Soil Research, 45, 629-634.
Chan K, van Zwieten L, Meszaros I, Downie A, Joseph S.
2008b. Using poultry litter biochars as soil amendments.
Soil Research, 46, 437-444.
Day D, Evans R J, Lee J W, Reicosky D. 2004. Valuable
and stable carbon co-product from fossil fuel exhaust
scrubbing. Journal of the American Chemical Society,
49, 352-355.
Demirbas A. 2004. Effects of temperature and particle size
on bio-char yield from pyrolysis of agricultural residues.
Journal of Analytical and Applied Pyrolysis, 72, 243-248.
Downie A, Klatt P, Munroe P. 2007. Slow pyrolysis:
Australian demonstration plant successful on multifeedstocks.
In: Bioenergy 2007 Conference. Jyvaskyla,
Finland. pp. 225-257.
Glaser B, Balashov E, Haumaier L, Guggenberger G,
Zech W. 2000. Black carbon in density fractions of
anthropogenic soils of the Brazilian Amazon region.
Organic Geochemistry, 31, 669-678.
Ioannidou O, Zabaniotou A. 2007. Agricultural residues as
precursors for activated carbon production - A review.
Renewable and Sustainable Energy Reviews, 11, 1966-
2005.
Lehmann J , Gaunt J , Rondon M. 2006. Bio-char
sequestration in terrestrial ecosystems - A review.
Mitigation and Adaptation Strategies for Global Change,
11, 395-419.
Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech
W, Glaser B. 2003. Nutrient availability and leaching
in an archaeological Anthrosol and a Ferralsol of the
Central Amazon basin: Fertilizer, manure and charcoal
amendments. Plant and Soil, 249, 343-357.
Lehmann J. 2007. Bio-energy in the black. Frontiers in
Ecology and the Environment, 5, 381-387.
Lima I M, McAloon A, Boateng A A. 2008. Activated
carbon from broiler litter: process description and cost of
production. Biomass Bioenergy, 32, 568-572.
Luostarinen K, Vakkilainen E, Bergamov G. 2010. Biochar
filter - Carbon containing ashes for agricultural purposes.
In: Report for Baltic Sea Action Summit (BSAS)
Commitment 2010. University of Helsinki, Finland. p. 3.
Major J, Steiner C, Downie A, Lehmann J. 2009. Biochar
effects on nutrient leaching. In: Lehmann J, Stephen J,
eds., Biochar for Environmental Management: Science
and Technology. Earthscan, London. pp. 271-287.
Rayment G E, Higginson F R. 1992. Australian Laboratory
Handbook of Soil and Water Chemical Methods. Inkata
Press, Melbourne, Sydney.
Sharma S K, Bryan G J, Winfield M O, Millan S. 2007.
Stability of potato (Solanum tuberosum L.) plants
regenerated via somatic embryos, axillary bud
proliferated shoots, microtubers and true potato seeds:
A comparative phenotypic, cytogenetic and molecular
assessment. Planta, 226, 1449-1158.
Skjemstad J O, Reicosky D C, Wilts A R, McGowan J A.
2002. Charcoal carbon in US agricultural soils. Soil
Science Society of America Journal, 66, 1249-1255.
Sohi S, Lopez-Capel E, Krull E, Bol R. 2009. Biochar,
climate change and soil: A review to guide future
research, CSIRO. Land and Water Science Report, 5, 17-
31.
van Zwieten L, Kimber S, Morris S, Chan K, Downie A,
Rust J, Joseph S, Cowie A. 2010. Effects of biochar
from slow pyrolysis of papermill waste on agronomic
performance and soil fertility. Plant Soil, 327, 235-246.

Adatlap tulajdonságai
Adatlap azonosító (eredeti)
1747
Bevivő
Elek Györgyi
Státusz
Publikált
Adatlap típusaTalajjavítási technológia
Létrehozás
Módosítás