Adatszolgáltató
Budapesti Műszaki és Gazdaságtudományi Tanszék, Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék, Környezeti Mikrobiológia és Biotechnológia Kutatócsoport
Elérhetőség
Hulladék, melléktermék fő adatai
- 02 MEZŐGAZDASÁGI, KERTÉSZETI, VÍZKULTÚRÁS TERMELÉSBŐL, ERDŐGAZDASÁGBÓL, VADÁSZATBÓL, HALÁSZATBÓL, ÉLELMISZER ELŐÁLLÍTÁSBÓL ÉS FELDOLGOZÁSBÓL SZÁRMAZÓ HULLADÉKOK
- 02 01 mezőgazdaság, kertészet, vízkultúrás termelés, erdészet, vadászat és halászat hulladékai
- 02 01 03 hulladékká vált növényi szövetek
A bambusz kiváló építési alapanyag, földrengés álló házak anyagául is alkalmazzák könnyű szerkezete, de kiváló teherbírása miatt. Az építés során keletkezett bambusz hulladék hasznosítható.
http://hadmernok.hu/2013_1_antalo.pdf
http://www.tervlap.hu/cikk/show/id/2505
Vegyi anyag (keverék) jellemzői és vegyi anyag tartalom
- Egyéb szervetlen vegyi anyagok
- szilícium
- Egyéb szervetlen vegyi anyagok
- kálcium
- Fémek, félfémek és vegyületeik
- kálium-oxid (K2O)
- Egyéb szervetlen vegyi anyagok
- foszfor-pentoxid (P2O5)
- Fémek, félfémek és vegyületeik
- alumínium
- Egyéb szervetlen vegyi anyagok
- magnézium
- Fémek, félfémek és vegyületeik
- vas
- Egyéb szervetlen vegyi anyagok
- kén
- Egyéb szervetlen vegyi anyagok
- nátrium
- Fémek, félfémek és vegyületeik
- titán
Vegyes hulladék, termék jellegű hulladék jellemzői
Cellulóz: 40,7%; hemicellulóz: 26,5%; lignin: 27,1%
Forrás: W. Leenakul and N. Tippayawong (2010) Dilute Acid Pretreatment of Bamboo for Fermentable Sugar Production, Journal of Sustainable Energy & Environment 1, pp. 117-120
Hulladék, melléktermék jellemzése
Aktívszenet gyártanak belőle.
Keith K.H. Choy, John P. Barford, Gordon McKay, Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis, Chemical Engineering Journal 109(1–3), pp. 147-165.
Ma, C., Xu, C., Shi, M., Song, G., Lang, X. (2013) The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation, Journal of Power Sources 242, pp. 273-279.
Égetéssel energianyerésre alkalmas.
Oyedun, A.O., Gebreegziabher, T., Hui, C.W. (2013) Mechanism and modelling of bamboo pyrolysis, Fuel Processing Technology 106, pp. 595-604.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Teli, M.D., Sheikh, J. (2013) Modified bamboo rayon–copper nanoparticle composites as antibacterial textiles, International Journal of Biological Macromolecules 61, pp. 302-307.
Ma, C., Xu, C., Shi, M., Song, G., Lang, X. (2013) The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation, Journal of Power Sources 242, pp. 273-279.
Hulladék, melléktermék veszélyessége
Feltételezhetően nincsen káros hatása.
Potenciális használat talajra
Magas szerves anyag tartalmának köszönhetően a szerkezeti humusztartalmat növeli.
Ma, X.J., Cao, S.L., Lin, L., Luo, X.L., Hu, H.C., Chen, L.H., Huang, L.L. (2013) Hydrothermal pretreatment of bamboo and cellulose degradation, Bioresource Technology 148, pp. 408-413.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Nincs számottevő N, P és K tartalma.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Nincs számottevő mezoelem tartalma.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Nincs számottevő mikroelem tartalma.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Magas szervesanyag, makro- és mikroelem tartalmának köszönhetően alkalmas lehet termesztőközeg adaléknak.
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2010) An overview of the chemical composition of biomass, Fuel 89 (2010) 913–933.
Mivel magas a szervesanyag tartalma ezáltal javíthatja a talaj szerkezetét, hozzájárulhat a szerkezeti humuszképződéshez megakadályozva a talajtömörödést.
Állagából kifolyólag nem.
Mivel magas a szervesanyag tartalma ezáltal javíthatja a talaj szerkezetét, hozzájárulhat a szerkezeti humuszképződéshez megakadályozva a talajtömörödést.
A leveléből készült por nehézfém eltávolításra alkalmas vizes oldatokból, a bambuszból készült aktív szént szintén széles körben alkalmazzák szennyezőanyagok eltávolítására.
Keith, Choy, Barford, McKay (2005) Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis, Chemical Engineering Journal 109(1–3), pp. 147-165.
Cho, D., Kim, J.M., Kim, D. (2013) Phenolic resin infiltration and carbonization of cellulose-based bamboo fibers, Materials Letters 104, pp. 24-27.
Mondal, D.K., Nandi, B.K., Purkait, M.K. (2013) Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies, Journal of Environmental Chemical Engineering, In Press
Különböző biokompozitok, építési anyagok, betonelemek alkotója lehet.
Teli, M.D., Sheikh, J. (2013) Modified bamboo rayon–copper nanoparticle composites as antibacterial textiles, International Journal of Biological Macromolecules 61, pp. 302-307.
Ghavami, K. (2005) Bamboo as reinforcement in structural concrete elements, Cement and Concrete Composites 27(6), pp. 637-649.
Li, Y., Shen, H., Shan, W., Han, T. (2012) Flexural behavior of lightweight bamboo–steel composite slabs, Thin-Walled Structures 53, pp. 83-90.
Tommy, Y., Lo, H.Z., Cui, P.W.C., Tang, H.C. Leung (2008) Strength analysis of bamboo by microscopic investigation of bamboo fibre, Construction and Building Materials 22(7), pp. 1532-1535.
Huda, S., Reddy, N., Yang, Y. (2012) Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties, Composites Part B: Engineering 43(3), pp. 1658-1664.
Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y., Shimizu, K. (1997) Fiber texture and
mechanical graded structure of bamboo. Composites Part B 28, pp. 13–20.
Verma, C.S., Chariar, V.M. (2012) Development of layered laminate bamboo composite and their mechanical properties, Compos Part B 43(3), pp. 1063–1069.
Khalil, H.P.S.A., Bhat, I.U.H., Jawaid, M., Zaidon, A., Hermawan, D., Hadi, Y.S.(2012) Bamboo fibre reinforced biocomposites: A review Review Article, Materials & Design 42, pp. 353-368.
Feltételezhetően nincsen káros hatása.