Data provider
Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Environmental Microbiology and Biotechnology Group
Contact details
Compulsory sheet
Information on the method
Measured endpoint
Description of the measurement technique
Measuring range
- Metals, semi-metals and their compounds
Measuring range
- Petroleum derivatives (TPH)
Measuring range
- Halogenated aliphatic organic compounds
Measuring range
- Other organic chemical substance
Implementation conditions
Implementation costs
Innovation, main features
A teljes talaj használata a kivonat helyett közvetlen érintkeztetést biztosít a tesztorganizmussal. A toxikus anyag által gátolt légzést a dehidrogenáz enzim aktivitásán keresztül mérjük. A dehidrogenáz aktivitását egy alternatív elektronakceptor, a tesztelegyhez tett TTC színváltozása jelzi. A színváltozást az okozza,hogy a TTC-ből formazán keletkezik. Ezt a piros színt vagy a talajszuszpenzióban vizuálisan állapítjuk meg (igen-nem), vagy oldószeres extrakció után fotométerrel mérjük.
Ismeretlen talajszennyezőanyagokkal és keverékekkel szennyeztt talaj esetén. Ha a szennyezőanyag hozzáférhetősége korlátozott és várható az idő és a körülmények függvényében megváltozhat. Ha fontos, hogy a tesztelés folyamán a tesztmikroorganizmusok érintkezzenek a tesztelendő talajjal vagy más meghatározó kölcsönhatások megnyilvánuljanak.
A talajszuszpenzió jelenléte ronthatja a vizuális kiértékelés jóságát.
Az Azomonas agilis-t ferde Fjodorov tápagaron tartjuk fenn. Átoltás után 48 órán át 28 ºC-on inkubáljuk.
A teszthez 30 ml steril Fjodorov táptalajba, Azomonas agilis-t oltunk be, az inokulumot 72 órán át 28 ºC-on rázógépen rázatjuk.
A vizsgálandó mintákból 2-2 g talajt egy órán keresztül, áramló gőzben sterilezzük. A talajmintákból a méréshez öttagú, kétszeres léptékű hígítási sort készítünk: 0,5 g, 0,25 g, 0,125 g, 0,0625 g és 0,0312 g, kémcsőbe bemért mennyiségekkel. A bemérést steril körülmények között végezzük. Idegen mikroorganizmusok gátolhatják az Azomonas agilis szaporodását.
A 48 órán keresztül, 25 oC-on rázatott baktériumszuszpenzióból 5 cm3-hez 100 cm3 steril Fjodorov táptalajt és 1 cm3 steril TTC oldatot adunk. Az elkészített keverékből a talajokat tartalmazó kémcsövekbe 2-2 cm3-t pipettázunk, homogenizáljuk (Vortex segítségével), 72 órán át 28 ºC-on sötétben inkubáljuk.
Referenciaként 400, 40, 4, 0,4 és 0,04 ppm koncentrációjú Cu- hígítási sorozatot használtunk. Az értékelést 72 óra múlva végeztük, vizuális módon. A piros szín megjelenése mikrobiális tevékenységre utal. Toxikus anyagok jelenlétében a dehidrogenáz enzimaktivitás gátolt, a TTC redukciója nem történik meg, a piros szín nem jelenik meg, vagy intenzitása kisebb, mint a szennyezetlen kontrollé. Ahol a piros szín nem jelenik meg, az enzimaktivitás gátlás 100%, 50%-os gátlás esetében halvány piros szín látható. A piros szín megjelenése mikrobiális tevékenységre utal (nincs gátlás).
A bemért talajmennyiségek függvényében ábrázoljuk a gátlás-értékeket. A kapott dózis-válasz görbéről leolvassuk az 50% enzimaktivitás-gátláshoz tartozó szennyezett talajdózis-értékeket(ED50), ami azt jelenti, hogy hány gramm talaj csökkenti az enzimaktivitást a felére.
SWOT (evalaution based on scores)
SWOT (evaluation in words)
Ez a tesztorganizmus és a direkt kontaktust biztosító teszt a toxikus fémek mellett, a nehezen hozzáférhető szennyezőanyagokra is érzékeny, mint például PAH-ok, PCB-k.
Talajlakó tesztorganizmusról lévén szó, reális választ kaphatunk a segítségével a talajökosztisztémára gyakorolt hatásról.
A tesztorganizmus érzékenységét kontrollálni kell. A végpont, a piros anyagcseretermék észlelése szubjektív lehet, barnás színű, sötétebb és a vizes szuszpenzióban nem ülepedő talajoknál nehezebb értékelni.
A teszt értékelése nem csak vizuálisan történhet, a keletkezett anyagcsereterméket, mely a piros színt okozza, szerves oldósezrrel ki is extrahálhatjuk, és fotometrálhatjuk, így az eredmény objektívebb,és kvantitatív.
A mintát sterilezni kell, a sterilezés hatására végbemenő fizikai-kémiai hatásokra gondolnunk kell (párolgás, bomlás, új toxikus bomlástermék), és annak megfelelően kell megválasztanunk a talajminta sterilezésének módját.
Other information, references
A talajszuszpenzióval végzett teszt eredménye nagy Kow értékű szenyezőanyagok esetében és szinergista hatások esetén nagyobb toxicitást mutat, mint ugyanazon talaj vizes extraktumával végzettteszt. Így ez a teszt a vizes kivonathoz képet konzervatívabb eredményt ad, de egy reális határon belül. Egyes szennyezőayag-talaj kölcsönhatások olyan erősek lehetnek, hogy szuszpenziós tesztben a talaj mátrixhatása miatt kisebb hatást mérünk, mint egy vizes kivontaban vagy csurgalékban. A két eredmény összhasonlítása a talaj toxicitást pufferoló képességére ad felvilágosítást.
Gruiz, Horváth és Molnár (2001)Környezettoxikológia – Vegyi anyagok hatása az ökoszisztémára, Műegy.Kiadó, Bp.
Gruiz, K. (2005) Soil testing triad for contaminated soil – In: Soil Remediation No6. (Eds.Fava and Canepa) pp.45–70, INCA, It
Feigl, V., Atkári, Á., Anton, A., Gruiz, K. (2007) Chemical stabilisation combined with phytostabilisation, Adv. Mat. Res. 20–21, 315–318.
Feigl V., Atkári Á., Uzinger N., Gruiz K. (2006) Fémmel szennyezett területek integrált kémiai és fitostabilizációja, Orsz. Körny.véd. Konf. Kiadványa 99–108.
Completed applications
Fitoremediációs technológia követésére jól alkalmazahtó teszt, jól követhető az alkalmazott adalékanyagok toxikusfém-stabilizációs hatása.