Data provider
Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Environmental Microbiology and Biotechnology Group
Contact details
Compulsory sheet of the technology
Financing of the project
Application sphere
- Chemical soil degradation
- Decrease in macro elements
Description of environmental risk
- Biological soil degradation
- Decrease in soil organic matter
Description of environmental risk
- Chemical soil degradation
- Decrease in macro elements
Description of environmental risk
- Biological soil degradation
- Egyéb biológiai degradáció
Description of environmental risk
- Chemical soil degradation
- Decrease in macro elements
Description of environmental risk
Information on the technology
A talaj szervesanyag tartalmának javítása érdekében pirolízis során (kb. 600°C) létrehozott lucfenyő alapú bioszenet alkalmaztak. Ezen felül földigilisztákon elkerülési teszteket végeztek a bioszén esetleges káros tulajdonságainak kiderítése céljából. A bioszenet egy 83%-ban homokot, 15%-ban iszapot és 2%-ban agyagot tartalmazó talajba keverték. A kísérleti talaj kémiai tulajdonságait megvizsgálták a bioszén bekeverése, majd annak elhelyezése után. A bioszenet a talaj felső 10 cm-vel keverték össze. Négyféle talajmintát vizsgáltak meg: bioszén-műtrágya, csak bioszén, csak műtrágya, kezeletlen; bioszén esetében 0 és 30 t szárazanyagtartalom/ ha−1, illetve szervetlen trágya hozzáadása esetén 0 és 361 kg/ ha−1. A mintákat 0-20 cm közötti mélységből vették ki; a K, P, Ca, Mg és S tartalmat ammónium-acetáttal, míg az ásványi nitrogén tartalmat 2 M-os KCl oldatban vonták ki.
A kísérletek során megvizsgálták a lucfenyő alapú bioszén hatásait a talaj javítása érdekében összehasonlítva a trágyázás hatásaival. Továbbá a földigilisztákkal végzett elkerülési tesztek bizonyították, hogy azokra nincs káros hatással; a bioszén elkerülését nem annak toxicitása okozza, hanem élettani, környezeti okai vannak.
Technology classification
- Soil amelioration with biochar
- Soil amelioration with biochar from other origin
Technology-monitoring
összes szén tartalom, biomassza növekedés.
Costs of the technology
A bioszén árának becslése függhet: gyártás során milyen eljárást alkalmaztak, mekkora mennyiség lett előállítva, a kész termék szállítási költsége stb. Értéke 10.0000-150.000 HUF/ tonna körüli.
30*(125.000)+250.000= 4.000 000 ft/ha
SWOT (evalaution based on scores)
SWOT (evaluation in words)
A talaj kálium és szerves szén tartalma nő
A földigiliszták miatt a talaj szerkezete kedvező irányba változik (lazább szerkezet). A bioszén szerves anyagok mellékterméke
A bioszén hatékonysága függ a bioszén alapanyagától és a pirolízis technológiai paramétereitől, valamint a kezelt talajtípustól és a degradációs fokától
Bioszén előállítása költséges.
A giliszták a fémeket mineralizálják. További kutatás a bioszén elkerülés tényezői pontosabb ismerete érdekében, ezzel segítve a talajban élő fauna alkalmazkodását. A bioszén gyártásával hasznosíthatók az erdő- és mezőgazdálkodás biomassza hulladékai.
A bioszén nagyobb dózisban történő adagolása veszélyt jelenthet a talaj ökoszisztémára, ezért talajra alkalmazást megelőzően meg kell vizsgálni összetételét.
Completed applications
Size of the treated area
- Other
A lucfenyő alapú bioszenet egy alapvetően savanyú homokos (83% tartalmú) talaj felső 10 cm-ben keverték be, majd vizsgálták annak ca, P, K, N, C, K és Mg tartalmát tavasszal és ősszel. A bioszén eredményeként megnőtt a talaj K, Mg, K és szerves C tartalma.
Publications, references
Priit Tammeorg, Tuure Parviainen, Visa Nuutinen, Asko
Simojoki, Elina Vaara, Juha Helenius: Effects of biochar
on earthworms in arable soil: avoidance test and field trial
in boreal loamy sand. Agriculture, Ecosystems and
Environment 191 (2014) 150–157
-ASTM D3175-02, 2002. Standard Test Method for Volatile Matter in the AnalysisSample of Coal and Coke. American Society for Testing and Materials, Con-shohocken, PA.
-Baumgartl, T., Koeck, B., 2004. Modeling volume change and mechanical propertieswith hydraulic models. Soil Sci. Soc. Am. J. 68, 57–65.
-Blouin, M., Hodson, M.E., Delgado, E.A., Baker, G., Brussaard, L., Butt, K.R., Dai, J.,Dendooven, L., Peres, G., Tondoh, J.E., Cluzeau, D., Brun, J.J., 2013. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64,161–182.
-Brockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physicaland mineral-nutrition properties of sand-based turfgrass root zones amendedwith biochar. Agron. J. 102, 1627–1631.
-Busch, D., Kammann, C., Grünhage, L., Muller, C., 2011. Simple biotoxicity tests forevaluation of carbonaceous soil additives: establishment and reproducibility offour test procedures. J. Environ. Qual. 40, 1–10.
-Butt, K.R., Nieminen, M.A., Sirén, T., Ketoja, E., Nuutinen, V., 2005. Population andbehavioural level responses of arable soil earthworms to boardmill sludge appli-cation. Biol. Fertil. Soils 42, 163–167.
-Carlon, C. (Ed.), 2007. Derivation Methods of Soil Screening Values in Europe. AReview and Evaluation of National Procedures towards Harmonization. EUR22805-EN. European Commission, Joint Research Centre, Ispra, Italy, p. 306.
-Liang, B., Lehmann, J., Sohi, S.P., Thies, J.E., O’Neill, B., Trujillo, L., Gaunt, J., Solomon,D., Grossman, J., Neves, E.G., Luizão, F.J., 2010. Black carbon affects the cyclingof non-black carbon in soil. Org. Geochem. 41, 206–213.
-Liesch, A.M., Weyers, S.L., Gaskin, J.W., Das, K.C., 2010. Impact of two differentbiochars on earthworm growth and survival. Ann. Environ. Sci. 4, 1–9.